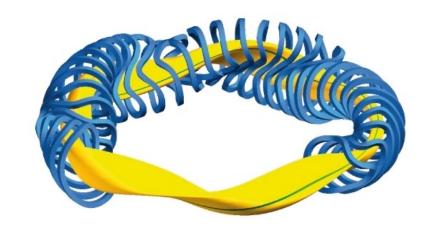
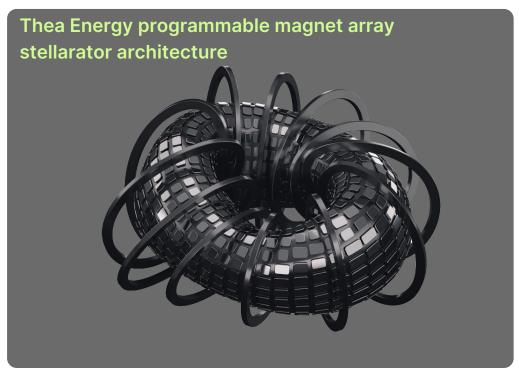


Prototyping and Test of the "Canis" 3x3 Magnet Array for Stellarator Field Shaping

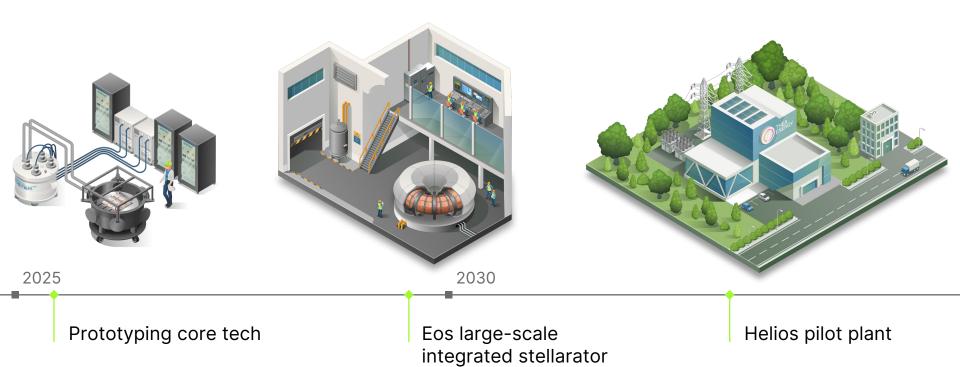

D. Nash, D.A. Gates, W.S. Walsh, M. Slepchenkov, D. Guan, A.D. Cate, B. Chen, M. Dickerson, W. Harris, U. Khera, M. Korman, S. Srinivasan, C.P.S. Swanson, A. van Riel, R.H. Wu, A.S. Basurto, B. Berzin, E. Brown, C. Chen, T. Ikuss, W.B. Kalb, C. Khurana, B.D. Koehne, T.G. Kruger, S. Noronha, J. Olatunji, R. Powser, K. Tamhankar, K. Tang, A. Tarifa, M. Savastianov, J. Wasserman, and C. Yang


Thea Energy Poster Presentations at MT29

Wed-Af-Po.01-03	Canis: 3×3 array of sub-scale planar coils for the Eos stellarator	Brian Chen
Thu-Mo-Po.04-04	Zethus: a prototype HTS planar shaping coil for the Eos stellarator	Kevin Tang
Thu-Mo-Po.09-02	Instrumentation of the Canis 3×3 superconducting magnet array	Matthew Dickerson
Thu-Af-Po.05-01	High-rate production and validation of Canis magnets	Ketaki Tamhankar Tommy Ikuss
Thu-Af-Po.07-03	Quench simulations of a 3×3 field shaping NI HTS coil array for a planar coil stellarator	Jamal Olatunji
Fri-Af-Po.03-04	The design and performance of the Canis 3×3 magnet array support systems	Milo Korman

We've Eliminated Complicated & Costly 3D Stellarator Magnets

Prior 3D magnet coil stellarator architecture W7-X, Germany¹



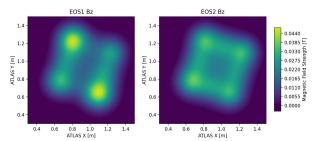
Faster & less costly to manufacture, construct, and operate

Pathway to Electricity on the Grid

"Canis" Magnet Array Program Goals

- Build 10 shaping coil Winding Packs (WP)
 - Double Pancake (DP) production ramped to ≥ 1 DP/day
 - DP production time < 4 days including acceptance test
 - Demonstrate insensitivity to HTS supplier

Demonstrate field shaping capability


- $_{\circ}$ Closed-loop control of $\mathbf{B}_{\mathbf{Z}}$ at each magnet
- Reproduce several field shapes with ≤ 1% RMS field error
- Validate field shapes with 2D scan 25 cm from array midplane

Eos scenario development

- Demonstrate controlled transition between field shapes
- Simultaneously discharge full array
- Show non-propagation and non-damage from quench
- Show insensitivity to manufacturing and assembly variation
- Develop Eos design criteria

Two Canis WPs in LN2 test configuration

Eos-relevant field shapes measured on scanning plane

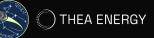
"Tilted" magnet demonstrating tolerance to assembly defects

Canis Shaping Coil Design

Planar coil stellarator design drivers

- ~200 A/mm² in >14 T total field → REBCO SUPERCONDUCTOR
- ~1,000 current leads for planar coil stellarator
 → LOW CURRENT
- DC operation, minimal charging or field quality constraints
 → NON-INSULATED
- Defect tolerance, passive quench protection
 → NON-INSULATED
- Stable radial resistance and structure over long cycle life
 → IMPREGNATED WINDING

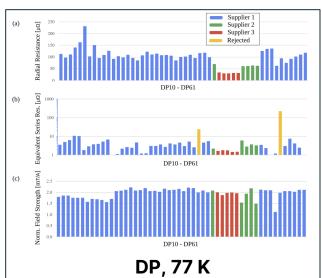
Array experience >> optimizing coil

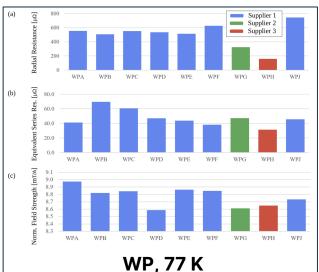

- Move to array fast with a viable magnet design
- Design coils for high margin and low risk
- $_{\circ}$ $\,\,$ Accept most "defects" if minimal impact to 20 K operation

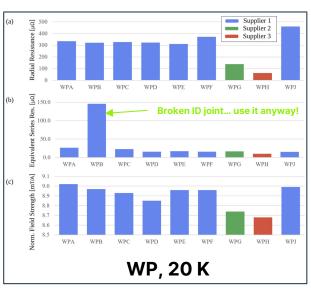
Canis limitations

- Background field impractical
- o Planar vs. conformal (3D) configuration
- ~10 km HTS utilization
- Edge effects

Criteria	Canis Magnet	Preliminary Eos Shaping Coil, Typical	
Operating current	150 A	295 A	
Operating temperature	20 K	20 K	
Number of pancakes per coil	10	20	
Total current per coil	225 kA-turn	1,180 kA-turn	
Stored energy per coil	4.4 kJ	345 kJ	
WP current density	180 A/mm ²	~200 A/mm²	
Coil shape	Rounded rectangle	Circular	
Winding (major) diameter	190 mm	480 mm	
Field in bore, self-field	1.8 T	3.5 T	
Peak self-field on HTS	3.7 T	7.2 T	
Peak background field $oldsymbol{\perp}$ to HTS	~0 T	9.3 T	
Peak total field on HTS	3.7 T	14.7 T	
Fraction of critical, total field, 20 K	~28%	80%	
Coil architecture	Soldered metal insulation (SMI)	Partially insulated (PI)	



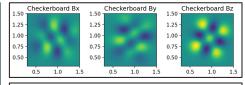

Shaping Coil Manufacturing


Manufactured coils integrated in Canis magnet array

- 50+ DPs manufactured and acceptance tested in liquid nitrogen (LN2)
- 10 WPs assembled and acceptance tested in LN2
- 10 WPs characterized at 20 K
- Characterized for:

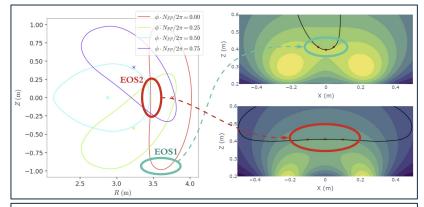
(a) equivalent series resistance (ESR), (b) radial resistance, and (c) field strength

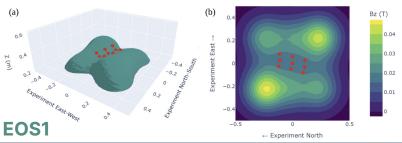
Field Shaping Campaign

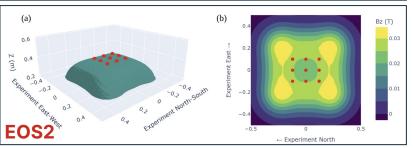

Field shapes should be Eos-meaningful

- Take "patches" from Eos last closed-flux surface boundary
- Concave and convex, high and low curvature
- $_{\circ}$ Use shapes from toroidal angle $\varphi = 0$ plasma section
- 0 Match Canis **B** · \hat{z} iso-surface shape to Eos **B** · $\hat{n} = 0$ contours at 9 discrete "anchor points"

Measure field shapes with ATLAS scanner


- o 2D gantry system with ±0.1% Hall effect sensor
- o Calibrate orientation with "checkerboard" field pattern

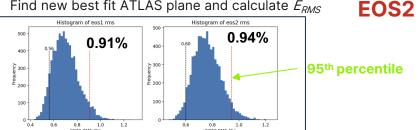


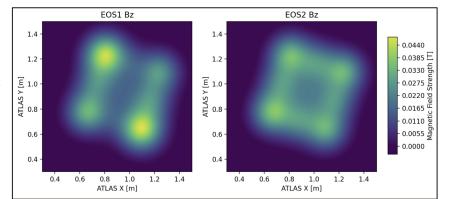


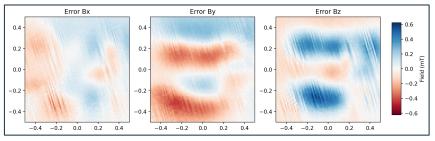
Group	Degree of Freedom		
	X	Y	Z
Scan Plane Offset [m]	-0.9508	-0.9362	0.2418
Scan Plane Rotation [°]	-0.0262	0.0254	72.70
Hall Probe Rotation [°]	-0.484	-0.808	0.330

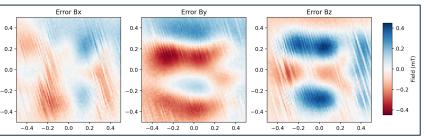
- (a) Canis iso-surface showing 9 anchor points in 3D space
- (b) Field projection on ATLAS scanning plane, 25 cm from array midplane

Field Error


- Generate 3D **B** prediction from as-built WP kernels
- Project **B** prediction onto calibrated ATLAS plane
- ATLAS scan at 12.5mm resolution
- Calculate error between prediction and scan


Error	Field Shape		
	EOS1	EOS2	
E_{RMS} [%] (mT)	0.56% (0.27 mT)	0.60% (0.24 mT)	
Peak B Error [%] (mT)		1.18% (0.48 mT)	
Peak B_z Error [%] (mT)	1.33% (0.62 mT)	1.17% (0.45 mT)	


EOS1


Bound error with Monte-Carlo analysis

- Hall sensor total uncertainty: ±0.9% (includes pos.)
- Magnet X||Y position, cold:
- Find new best fit ATLAS plane and calculate E_{RMS}

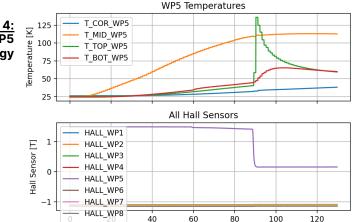
Array Quench

Scenario 4: Bullseye Quench in WP5 Energy

· Goals

- o Induce quench with 300 W heaters at coil midplane
- Demonstrate self-protection
- Demonstrate non-propagation of quench
- Evaluate quench time scale
- Evaluate minimum quench energy (heater duration)

Uniform


Bullseve

Quench Experiments

- ı. Uniform at ~l_{OP}, quench center coil 🚣 🚣 🗸
- 2. Uniform at ~I_{OP}, quench edge coil
- 3. Uniform at ~I_{OP}, quench corner coil
- 4. "Bullseye", quench center coil (negatively charged)

Results

- All survived with no measured performance change
- No quenches propagated to neighboring coil

	Time [s]			
Experiment	1	2	3	4
Quenching coil	WP5/A Center	WP2/B Edge	WP3/G Corner	WP5/A Center
Pattern	Uniform	Uniform	Uniform	"Bullseye"
Quenching coil R _{RAD} , 20 K	~335 μΩ	~321 μΩ	~138 μΩ	~335 μΩ
Minimum quench energy	~21 kJ	~27 kJ	~42 kJ	~21 kJ
Incubation period	~86 s	~170 s	~239 s	~81 s
Quench duration	~1.5 s	~1.5 s	~2.0 s	~1.5 s
Measurable performance change post-quench?	No	No	No	No
Quench propagates to other coils?	No	No	No	No

HALL WP9

Defect Tolerance

- · Short out a full DP in an edge coil
 - Closed-loop field control overdrives short coil
 - E_{RMS} increases by ≤0.17%
- Install center coil at ~2.8° tilt
 - Detect and quantify tilt algorithmically

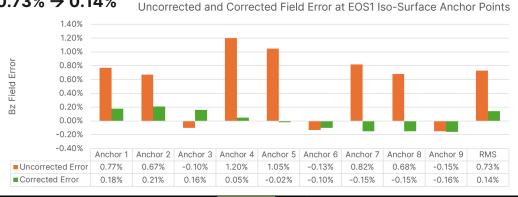
Hall Data

ML Find Bad Coil

Optimization -or- ML

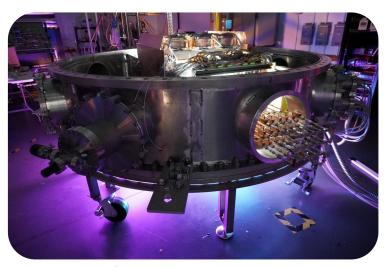
Estim.

Update Field Targets


EOS1 0.4 Shorted DP field error 0.2 0.0 0.0 0.0 -0.2 -0.2 Defective coil center -0.4 -0.4 -0.2 0.0 0.0 -0.2 0.0 Error Bx Error By Error Bz EOS2 0.4 Shorted DP field error 0.2 0.0 -0.2 -0.2

Error Bz

Decrease RMS field error at anchor points 0.73% → 0.14%


We Will it

"Tilted" Winding Pack assembly

Conclusion

- Thea Energy prototyped a 3x3 array of planar shaping magnets
- The Canis magnet array program demonstrated:
 - Manufacturing rate up to 2 DPs/day
 - Closed loop control of magnetic field iso-surfaces
 - <1% RMS error for stellarator-relevant field shapes</p>
 - Non-damage and non-propagation from quench
 - Tolerance to manufacturing and assembly defects
- Future shaping coil work
 - Further AI/ML defect detection and control development
 - Eos-scale shaping coil magnet
 - Eos "Field Shaping Unit" prototype
- Thank you!

Canis magnet array and cryostat

