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Introduction

At the plasma pressures relevant for fusion-grade plasmas, ideal MHD
instabilities can quickly destroy plasma confinement on Alfvenic
timescales. Stellarator optimization must therefore account for ideal
MHD stability in any viable candidate equilibrium. Here, we present
quasi-axisymmetric (QA) equilibria optimized for linear, ideal MHD
stability. Results are analyzed using the TERPSICHORE [1] code.

Tools

Stellarator equilibria are optimized using the DESC [2] code. The code
TERPSICHORE is used within DESC to optimize for MHD stability by
minimizing the growth rate

DESC

e Stellarator 3-D MHD equilibrium solver and optimization suite
* Uses pseudo-spectral approach with automatic differentiation
* GPU-accelerated

TERPSICHORE

* Linear, ideal MHD stability eigenvalue solver in 3-D geometries
* Uses the Energy Principle to determine stability

* Vacuum region with conformal-like conducting wall

* User-specified active mode table

* Internal/external pressure- and current-driven instabilities
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* Plasma is stable when w? > 0

* Displacement (perturbation) vector is Fourier decomposed in the
radial and binormal directions

Radlial displacement vector
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Selected Equilibria

Using the Landreman, Buller, Drevlak [3] finite beta, two-field period QA
configuration as an initial condition, the equilibrium is optimized for MHD

stability using TERPSICHORE
See poster JP12.00055 in this session for details
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Simulation parameters:

« Conformal wall with a minor radius of 2x plasma minor radius

« “No wall” limit

. Boozer spectral range: mpo, = 17, |n|po, = 16

« 256 radial surfaces

Active Modes

« Restricted to Mstab < 127 ’n|stab <4

« Simulations are run using either all modes, N=0 family, or N=1 family

Stability Criteria

 Positive growth rates are not necessarily catastrophic [4]
« Growth rates above ~1% of an Alfven time are indeed
considered serious
» Behavior slightly below this range is more ambiguous and

requires nonlinear verification
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Radial Displacement Eigenfunction

0.00
—-0.25

&l

The eigenfunctions of the radial displacement vector amplitude of
the fastest growing mode is plotted as a function of normalized
toroidal flux

Plotted magnitudes are normalized to the maximum value of all
eigenfunctions

The N=0 family (periodicity-preserving) and N=1 family (periodicity-
breaking) are analyzed separately for each equilibrium

(only showing 5 largest eigenfunctions)
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Dominant eigenfunctions in both equilibria are global and external
The dominant mode structure and family changes after optimization

Growth rates are very close to the threshold where results become
ambiguous
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TERPSICHORE provides the displacement vector of the fastest

growing mode

¢/max(|£|) is plotted on each surface
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Initial Equilibrium
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Conclusion / Future Work

The growth rate for MHD instabilities has been successfully
reduced using TERPSICHORE in a DESC optimization

Work is ongoing to further reduce the growth rate and perform
subsequent nonlinear simulations

Stay tuned!
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