
Introduction 
On the path to a fusion pilot plant, Thea Energy plans to build Eos, a 
sub-breakeven, deuterium-deuterium, beam-target fusion, stellarator 
neutron source facility for producing tritium and other valuable 
radioisotopes. In this paper, a set of 1-D plasma physics models are 
coupled and used to design the operating point of the facility and 
predict performance. Models of 1-D profile-dependent neutral beam
stopping, ion beam slowing down, beam-target fusion, electron-ion 
classical heat transfer, energy confinement (ISS04), beam pressure, 
beam heating of ions and electrons, beam-beam fraction, and neutral 
beam injection and gyrotron heating electrical efficiencies are included. 
A numerical optimizer is used to determine the minimum required facility 
electric power to generate tritium at a given rate. A stellarator facility 
requiring 40 MWe would produce as much tritium as a CANDU reactor. 
Manuscript submitted to Nuclear Fusion.[1]

Electromagnetic coils

The Model
The model is 1D: Resolved in radial profiles, beam chord length, and 
beam-ion energy.
The following phenomena are resolved:
• 1D Plasma profiles

• Parabolic power-law profiles: 𝑛, 𝑇 ∝ 1 − 𝜌! "!,#

• Plasma conditions along the beam chord:
• Parabolic plasma axis, circular cross section:
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• Neutral beam stopping:
• Power law fit to Suzuki [3]: 𝜎'()* ∝ 𝐸+,../.

• Beam-target slowing from beam distribution
• Energy-resolved fusion cross section, deterministic classical 

slowing on electrons and ions [4]:
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• Electron-ion thermal transfer
• Classical collisions
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• Beam heating of ions and electrons

• 𝑃9,;,</6 = ∫,
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• Energy confinement
• ISS04 empirical scaling, 𝜏=>>,? [5]
• Confinement enhancement factor 𝐻=>>,? = 1.5

• Excess electron or plasma power made up with ECRH, gyrotron 
tubes

• Facility power
• Beam efficiency 𝜂9 = 0.3
• ECRH efficiency 𝜂@ = 0.45
• Balance of plant 𝑃ABC = 5	𝑀𝑊

Equilibrium parameters

Major radius 𝑅 3.24 meters

Aspect ratio 𝐴 6

Rotational transform 𝜄!/# 0.66

Axial magnetic field 𝐵$ 5 T

Max radius of curvature 𝑅%,'() 5.84 m

Parametric Results
Assuming 𝐸9 = 1	𝑀𝑒𝑉, Δ𝑅( = 0.1	𝑚, producing 2.5×10D.𝑛/𝑠 or 0.2 
grams/day of tritium or 73 grams/year of tritium.

Conclusion
Simple 1D plasma physics models have been coupled to evaluate the 
design of a beam-target DD stellarator neutron source for the 
production of radioisotopes including tritium. The analysis indicates 
that a facility including a medium-scale stellarator and NNBI using 40 
MWe could produce as much tritium as a CANDU reactor. 
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NNBI [2]
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Eos will confine plasma in a quasi-axisymmetric magnetic field produced 
by a set of planar electromagnetic coils. Planar plasma-encircling coils: 
White, orange, and blue. Planar shaping coils: Rounded rectangles. NNBI 
beamline: Light blue rectangular prism.

Beam-target DD Fusion Neutron Production:

Total facility power has a minimum at 𝑃F6G = 39	𝑀𝑊, 𝑇6,, =
23.5	𝑘𝑒𝑉, 𝑛6,, = 6.5×10DH/𝑚7. Minimum is broad and extends along the 
contour at which the beam power is just sufficient to balance 
transport power (rad dashed line).
However, this optimum has impractically high shine-through power 
and beam beta. Pareto front of facility power and shine-through 
power:

Moving to colder / denser plasma decreases the shine-through while 
having little effect on the required facility power

Equilibrium parameters

Quantity Symbol 𝑬𝒃 free 𝑬𝒃 = 1 MeV 𝑷𝒔𝒕 = 500 kW

Required facility electric power 𝑃-./ 38 MW  39 MW  41 MW

Core electron temperature 𝑇.,$	 22 keV  24 keV  21 keV

Core electron density 𝑛.,$	 7.6×1001/𝑚#	 6.5×1001	/𝑚#	 1.0×10!$	/𝑚#

Beam energy 𝐸2 1.3 MeV 1.0 MeV 1.0 MeV
Beam tangency radius inward shift Δ𝑅3 0.14 m 0.14 m 0.16 m
Injected beam power 𝑃2 10 MW 10 MW 11 MW
Beam shine-through 𝑃43 17% 15% 4.80%
Ion-electron thermalization power 𝑃(. 2.4 MW 1.7 MW 4.4 MW
ISS04 transport power 𝑃566$7 8.2 MW 8.6 MW 10 MW
Beam ion heating 𝑃2,8,( 3.0 MW 3.9 MW 4.0 MW

Beam electron heating 𝑃2,8,. 5.3 MW 4.7 MW 6.0 MW

Electron cyclotron heating 𝑃9,8,. ∼ 0 ∼ 0	 ∼ 0

Neutron rate 𝑅) 2.5×100:	𝑛/𝑠	 2.5×100:	𝑛/𝑠	 2.5×100:	𝑛/𝑠

Average target plasma beta 𝛽; 0.67% 0.63% 0.85%

Average effective beam beta 𝛽.<<,2 3.40% 3.90% 2.50%

3 cases are evaluated: In which the beam energy is free to change, in 
which the beam energy is limited to 1 MeV, and in which the shine-
through power is constrained to 500 kW. The low-shine-through case 
requires a colder, denser target plasma but not much higher total 
facility power. 

https://doi.org/10.1088/1367-2630/19/2/025005
https://doi.org/10.1088/0741-3335/40/12/009
https://doi.org/10.1088/0029-5515/16/1/010
https://doi.org/10.1088/0029-5515/45/12/024
http://www.thea.energy/
mailto:info@thea.energy

